Vorhaben:

Ergänzung zum Antrag auf eine wasserrechtliche Erlaubnis vom 14.03.2022 für Versickerung in einen Straßengraben und

für das Einleiten von Niederschlagswasser aus dem Industriegebiet "GI Schaidweg Nord" in den Irlgraben

Vorhabensträger:

Gemeinde Niederwinkling / VG Schwarzach

Marktplatz 1

93374 Schwarzach

Hydrotechnische Berechnung

vom 25.10.2022 Ergänzungsantrag

Projekt Nr.: 531 293

Entwurfsverfasser:	Vorhabensträger:
EBB Ingenieurgesellschaft mbH	
Michael-Burgau-Straße 22a	
93049 Regensburg	
Regensburg, den 25.10.2022	Niederwinkling, den
(Unterschrift)	(Unterschrift)

Flächenermittlung "GI Schaidweg Nord"

Einleitungsstelle A1 - Teileinzugsgebiet Straßenfläche der Planstraße

	Einzuggebiet	Fläche m²	Flächen- gruppe	ψ	Summe m²	
1	T2 best. Straßengraben - bis Pa	rzelle 4				
	Straße Summe	1.323 1.323	V2	0,9	1.191 1.191	
2	T3 Parzelle 4 - Ende Parzelle 2					
	Straße Summe	579 579	V2	0,9	521 521	
3	T4 Ende Parzelle 2 - Ausbauend	e				
	Straße Summe	1.513 1.513	V2	0,9	1.362 1.362	
	Summe:	3.415	m²		3.074	m²

Bearbeitung: I. Stezowski

Bemessung von Regenrückhalteräume nach Arbeitsblatt DWA-A 117

Ergänzung zum Antrag auf eine wasserrechtliche Erlaubnis für das Einleiten von Niederschlagswasser aus dem Industriegebiet "GI Schaidweg Nord" in den Irlgraben

Fläche der Straßenflächen der Planstraße

Anmerkung:

Die Flächen wurden digital (CAD) ermittelt.

Projekt : Industriegeb Becken : Versickerung		D	atum :	08,1	2,2021	
Flächen	Art der Befestigung	AE	j in ha	Ψm	Α	_u in ha
Anliegerstraße-0,05 ha	Asphalt - T1		0	0,9		0
Anliegerstraße	Asphalt - T2		0,132	0,9		0,119
Anliegerstraße	Asphalt -T3		0,058	0,9		0,052
Anliegerstraße	Asphalt - T4		0,151	0,9		0,136
		Σ =	0,341		Σ =	0,307

Berechnung der Flächen für die 5 jährlichen 10 min Regenereignis der Parzellen

$$r_{5/10} = 267,7 \text{ l/sxha}$$

je Parzelle dürfen 20 l/s dem Kanal zugeleitet werden. Insgesammt aus dem Baugebiet dürfen 80 l/s dem Kanal zugeleitet werden. Der Rest muss auf den Grundstücken zurückgehalten werden.

F = 20 l/s / 267,7 l/s xha

F '= 0,075 ha

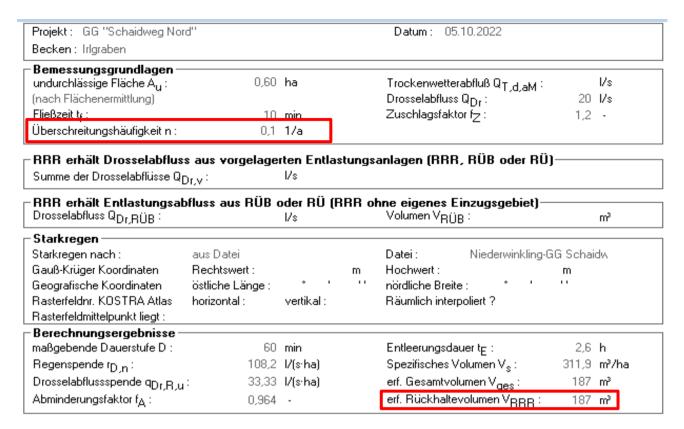
Es sind drei Grundstücke je 0,075 ha:

F
$$= 4 \times 0.075 \text{ ha} = 0.30 \text{ ha}$$

Die zur betrachtende Fläche beträgt 0,30 ha Parzellenfläche und 0,308 ha Straßenfläche. Insgesamt wird zur Berechnung des Rückstauvolumens eine Abflusswirksamefläche von 0,608 ha eingesetzt.

1. Überschreitungshäufigkeit n = 0,2/a - 5 jährlich

Projekt : GG "Schaidweg Nord" Datum : 05.10.2022 Becken : Irlgraben						
Flächen	Art der Befestigung	AE	j in ha	Ψm	Α	_u in ha
Anliegerstraße- 0,05ha	Asphalt - T1		0	0,9		0
Anliegerstraße	Asphalt - T2		0,132	0,9		0,119
Anliegerstraße	Asphalt - T3		0,058	0,9		0,052
Anliegerstraße	Asphalt - T4		0,151	0,9		0,136
fikt. Grundstücksfläche	Pflaster mit dichten Fugen		0,40	0,75		0,3
		Σ =	0,741		Σ =	0,607


Projekt: GG "Schaidweg Nor	d''			Datum: 05.10.2022	
Becken: Irlgraben					
Bemessungsgrundlagen –					
undurchlässige Fläche A _u :	0,60	ha		Trockenwetterabfluß Q _{T,d,aM} :	I/s
(nach Flächenermittlung)				Drosselabfluss Q _{Dr} :	20 I/s
Fließzeit t _f :	10	min		Zuschlagsfaktor f :	1,2 -
Überschreitungshäufigkeit n :	0,2	1/a			
BBB erhält Drosselahflus	s aus vorgelage	rten Entlas	stunas.	anlagen (RRR, RÜB oder RÜ)	
Summe der Drosselabflüsse Q _[1/s	otaligo	amagen (mm), neb eder ne,	•
RRR erhält Entlastungsat	ofluss aus RÜB (oder RÜ (F	RRR ol	nne eigenes Einzugsgebiet)—	
RRR erhält Entlastungsat Drosselabfluss Q _{Dr,RÜB} :	ofluss aus RÜB (oder RÜ (F	RRR ol	nne eigenes Einzugsgebiet)— Volumen V _{RÜB} :	m³
RRR erhält Entlastungsat Drosselabfluss Q _{Dr,RÜB} : Starkregen	ofluss aus RÜB (RRR ol		m³
Drosselabfluss Q _{Dr,RÜB} :	ofluss aus RÜB of aus Datei		RRR ol		
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach :			RRR ol	Volumen V _{RÜB} :	
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach : Gauß-Krüger Koordinaten	aus Datei Rechtswert :			Volumen V _{RÜB} : Datei : Niederwinkling-G	G Schaidw
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach :	aus Datei		m	Volumen V _{RÜB} : Datei : Niederwinkling-G Hochwert : nördliche Breite : * '	iG Schaidw
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach: Gauß-Krüger Koordinaten Geografische Koordinaten Rasterfeldnr. KOSTRA Atlas	aus Datei Rechtswert : östliche Länge :	1/s	m	Volumen V _{RÜB} : Datei : Niederwinkling-G Hochwert :	iG Schaidw
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach: Gauß-Krüger Koordinaten Geografische Koordinaten Rasterfeldnr. KOSTRA Atlas Rasterfeldmittelpunkt liegt:	aus Datei Rechtswert : östliche Länge :	1/s	m	Volumen V _{RÜB} : Datei : Niederwinkling-G Hochwert : nördliche Breite : * '	iG Schaidw
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach: Gauß-Krüger Koordinaten Geografische Koordinaten Rasterfeldnr. KOSTRA Atlas Rasterfeldmittelpunkt liegt: Berechnungsergebnisse	aus Datei Rechtswert : östliche Länge :	Vertikal:	m	Volumen V _{RÜB} : Datei: Niederwinkling-G Hochwert: nördliche Breite: * ' Räumlich interpoliert?	iG Schaidw
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach: Gauß-Krüger Koordinaten Geografische Koordinaten Rasterfeldnr. KOSTRA Atlas Rasterfeldmittelpunkt liegt: Berechnungsergebnisse – maßgebende Dauerstufe D:	aus Datei Rechtswert : östliche Länge : horizontal :	vertikal :	m	Volumen V _{RÜB} : Datei: Niederwinkling-G Hochwert: nördliche Breite: * ' Räumlich interpoliert? Entleerungsdauer t _E :	iG Schaidw m ''
Drosselabfluss Q _{Dr,RÜB} : Starkregen Starkregen nach: Gauß-Krüger Koordinaten Geografische Koordinaten Rasterfeldnr. KOSTRA Atlas Rasterfeldmittelpunkt liegt: Berechnungsergebnisse	aus Datei Rechtswert : östliche Länge : horizontal :	Vertikal:	m	Volumen V _{RÜB} : Datei: Niederwinkling-G Hochwert: nördliche Breite: * ' Räumlich interpoliert?	iG Schaidw m ''

Die Drosselmenge wird auf 30 l/s begrenzt. Da es sich hier um einen Mönch handelt (ungeregeltes Organ) werden max. 2/3 des Drosselabflusses für die Berechnung herangezogen.

$$Q_{DR max} = 20 \text{ I/s}$$

Das geplante Stauraumvolumen ist ausreichend, um das 5-jährliche Niededrschlagswasser speichern zu können und berägt 252 m^3 .

2. Überschreitungshäufigkeit n = 0,1/a - 10 jährlich

In dem Becken kann ohne Probleme sogar 10-jährliches Regenereigniss untergebracht werden.

Das maximale Speichervolumen des Beckens beträgt 798 m³. Dieses Volumen wird erreich bei max. Anstauhöhe des Beckens.

Der mittlere Abfluss aus dem Baugebiet im unbebauten Zustand liegt ca. auf der gewählter mittlen Drosselabfluss.

Dadurch ergibt sich keine deutliche Verschlechterung für das Gewässer.

Bearbeitung: I. Stezowski

1. Volumen der Rückhaltung bei dem niedrigsten Wasserstand (Pyramidenstumpf)

HRB Fläche bei Wsp Stauziel	325,35 müNN	D =	411 m ²
HRB Grundfläche Sohle bzw min.WSP	324,42 müNN	G =	140 m ²
Stauhöhe		h =	0,93 m
Volumen (Pyramidenstumpf)		V =	245 m ³

Höhenlagen - 1

Dammkrone	326,70	müNN	Krone - Stauziel	1,35
Stauziel	325,35	müNN		
Niedrigste Beckensohle	324,36	müNN		
Mittlere Beckensohle	324,42	müNN		
Höchste Beckensohle	324,49	müNN		
Sohle Drossel	324,35	müNN		

Drosselschacht: Ausfluss unter kreisförmigem Schütz

bei max. Stauhöhe		_	bei min. Stauhöhe		
Stauhöhe Oberwasser ho	0,93	m	Stauhöhe Oberwasser ho	0,14	m
0 % Verlust durch Rechen	0,00	m	0 % Verlust durch Reche	0,00	m
Stauhöhe nach Rechen h	0,93	m	Stauhöhe nach Rechen I	0,14	m
Stauhöhe Unterwasser hu	0,93	m	Stauhöhe Unterwasser h	0,05	m
Schützdurchmesser a	0,110	m	Schützdurchmesser a	0,110	m
Schützfläche A	0,010	m²	Schützfläche A	0,010	m²
Verhältnis h/a	8,45		Verhältnis h/a	1,27	
Beiwert µ	0,720		Beiwert µ	0,660	
Verhältnis hu/a	8,45		Verhältnis hu/a	0,45	
Beiwert c	1,00		Beiwert c	1,00	
Abfluss Q	29,2	l/s	Abfluss Q	10,4	I/s

Abfluss-Mittelwert 19,8 I/s maßgebend für RRB

2. Volumen der Rückhaltung bei dem max. Wasserstand (Pyramidenstumpf)

HRB Fläche bei Wsp Stauziel	326,40 müNN	D =	746 m ²
HRB Grundfläche Sohle bzw min.WSP	324,42 müNN	G =	140 m ²
Stauhöhe		h =	1,98 m
Volumen (Pyramidenstumpf)		V =	798 m³

Höhenlagen - 2

Dammkrone	326,70	müNN	Krone - Stauziel	0,30
Stauziel	326,40	müNN		
Niedrigste Beckensohle	324,36	müNN		
Mittlere Beckensohle	324,42	müNN		
Höchste Beckensohle	324,49	müNN		
Sohle Drossel	324,35	müNN		

Drosselschacht: Ausfluss unter kreisförmigem Schütz

bei max. Stauhöhe			bei min. Stauhöhe		
Stauhöhe Oberwasser ho	1,98	m	Stauhöhe Oberwasser ho	0,14	m
0 % Verlust durch Rechen	0,00	m	0 % Verlust durch Reche	0,00	m
Stauhöhe nach Rechen h	1,98	m	Stauhöhe nach Rechen I	0,14	m
Stauhöhe Unterwasser hu	1,98	m	Stauhöhe Unterwasser h	0,05	m
Schützdurchmesser a	0,110	m	Schützdurchmesser a	0,110	m
Schützfläche A	0,010	m²	Schützfläche A	0,010	m²
Verhältnis h/a	18,00		Verhältnis h/a	1,27	
Beiwert µ	0,720		Beiwert µ	0,660	
Verhältnis hu/a	18,00		Verhältnis hu/a	0,45	
Beiwert c	1,00		Beiwert c	1,00	
Abfluss Q	42,6	l/s	Abfluss Q	10,4	I/s

Abfluss-Mittelwert 26,5 I/s maßgebend für RRB

Ablauf bei Vollstau DN500 und Notüberlauf (1-seitiger Überlauf)

Schwellenlänge 1 * 2 m 2,00 m
Überfallhöhe 0,20 m

Abflussbeiwert Wehrform 0,50 - breit / scharfkantig

Ablauf Notüberlauf- Bauwerk 264,1 l/s

Auslaufleitung DN500 187,0 l/s

I =0,246 %

max. Abfluß 264 l/s

Zulauf zum RRB aus dem Baugebiet	Q max [l/s]	80
Ablauf vom RRB über Bauwerk (Mönch)		
max. 30 l/s l/s		30
Ableitung Mönch	QAbl. [l/s]	20
erf. Notüberlauf über Dammscharte	Q voll [l/s]	60

Notüberlauf über Dammscharte

$$Q = Qmax - Q_{Abl}$$

Q = 80 l/s -20 l/s = 60 l/s

$$Q = 2/3 * \mu * b* \sqrt{(2g) * h\ddot{u}^{3/2}}$$
 [m^{3/s}]

 $\mu = 0.5$ Wehrkrone breit, scharfkantig, waagerecht

b = 15 Breite der Wehrkrone

h = 0,03 m Überfallhöhe (326,43 müNN - 326,40 müNN)

Q = 115,0 <u>I/s</u>

Die Dammscharte wird auf eine Länge vom 15,0 m mit Wasserbausteinen befestigt.

Die Böschungsneigung der Dammscharte wird 1:3 ausgeführt.

Die Überfallhähöhe beträgt 0,03 m

Bearbeitung: Stezowski